Part Number Hot Search : 
SD5014 TA0711A TIP3055 100PGAA5 113Z3 KP100 EMK33H 78LE5
Product Description
Full Text Search
 

To Download IRHMS597064SCS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  absolute maximum ratings parameter units i d @ v gs = -12v, t c = 25c continuous drain current -45* i d @ v gs = -12v, t c = 100c continuous drain current -45* i dm pulsed drain current  -180 p d @ t c = 25c max. power dissipation 208 w linear derating factor 1.67 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  890 mj i ar avalanche current  -45 a e ar repetitive avalanche energy  20.8 mj dv/dt peak diode recovery dv/dt  -3.8 v/ns t j operating junction -55 to 150 t stg storage temperature range lead temperature 300 (0.063 in./1.6 mm from case for 10s) weight 9.3 (typical) g pre-irradiation international rectifiers r5 tm technology provides high performance power mosfets for spaceapplications. these devices have been characterized for single event effects (see) with useful performance up to an let of 80 (mev/(mg/cm 2 )). the combination of low r ds(on) and low gate charge reduces the power losses in switching applications such as dc to dcconverters and motor control. these devices retain all of the well established advantages of mosfets such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. o c a  www.irf.com 1 for footnotes refer to the last page 
  features:  low r ds(on)  fast switching  single event effect (see) hardened  low total gate charge  simple drive requirements  ease of paralleling  hermetically sealed  ceramic eyelets  electrically isolated  light weight to-254aa low-ohmic radiation hardened jansr2n7524t1power mosfet 60v, p-channel thru-hole (low-ohmic to-254aa) ref: mil-prf-19500/733 technology    irhms597064 product summary part number radiation level r ds(on) i d qpl part number irhms597064 100k rads (si) 0.017 ? -45a* jansr2n7524t1 irhms593064 300k rads (si) 0.017 ? -45a* jansf2n7524t1 pd-94713c downloaded from: http:///
irhms597064, jansr2n7524t1 pre-irradiation 2 www.irf.com note: corresponding spice and saber models are available on international rectifier website. for footnotes refer to the last page source-drain diode ratings and characteristics parameter min typ max units t est conditions i s continuous source current (body diode) -45* i sm pulse source current (body diode)  -180 v sd diode forward voltage -5.0 v t j = 25c, i s = -45a, v gs = 0v  t rr reverse recovery time 110 ns t j = 25c, i f =-45a, di/dt -100a/ s q rr reverse recovery charge 460 nc v dd -25v  t on forward turn-on time intrinsic turn-on time is negligible. turn-on speed is substantially controlled by l s + l d . a 
  thermal resistance parameter min typ max units t est conditions r thjc junction-to-case 0.60 r thcs case-to-sink 0.21 c/w r thja junction-to-ambient 48 ty pical socket mount electrical characteristics @ tj = 25c (unless otherwise specified) parameter min typ max units t est conditions bv dss drain-to-source breakdown voltage -60 v v gs = 0v, i d = -1.0ma ? bv dss / ? t j temperature coefficient of breakdown -0.064 v/c reference to 25c, i d = -1.0ma voltage r ds(on) static drain-to-source on-state 0.017 ? v gs = -12v, i d = -45a resistance v gs(th) gate threshold voltage -2.0 -4.0 v v ds = v gs , i d = -1.0ma g fs forward transconductance 39 s v ds = -15v, i ds = -45a  i dss zero gate voltage drain current -10 v ds = -48v ,v gs = 0v -25 v ds = -48v, v gs = 0v, t j =125c i gss gate-to-source leakage forward -100 v gs = -20v i gss gate-to-source leakage reverse 100 v gs = 20v q g total gate charge 160 v gs =-12v, i d = -45a q gs gate-to-source charge 60 nc v ds = -30v q gd gate-to-drain (miller) charge 65 t d (on) turn-on delay time 35 v dd = -30v, i d = -45a t r rise time 150 v gs =-12v, r g = 2.35 ? t d (off) turn-off delay time 100 t f fall time 35 l s + l d total inductance 6.8 measured from drain lead (6mm /0.25in. from package) to source lead (6mm /0.25in. from package) with source wires internally bonded from source pin to drain pad c iss input capacitance 8040 v gs = 0v, v ds = -25v c oss output capacitance 2780 p f f = 1.0mhz c rss reverse transfer capacitance 310 r g internal gate resistance 2.2 ? f = 0.75mhz, open drain na  nh ns a downloaded from: http:///
www.irf.com 3 pre-irradiation irhms597064, jansr2n7524t1 table 1. electrical characteristics @ tj = 25c, post total dose irradiation  parameter 100k rads (si) 1 300k rads (si) 2 units test conditions min max min max bv dss drain-to-source breakdown voltage -60 -60 v v gs = 0v, i d = -1.0ma v gs(th) gate threshold voltage -2.0 -4.0 -2.0 -5.0 v gs = v ds , i d = -1.0ma i gss gate-to-source leakage forward -100 -100 na v gs =-20v i gss gate-to-source leakage reverse 100 100 v gs = 20 v i dss zero gate voltage drain current -10 -10 a v ds = -48v, v gs = 0v r ds(on) static drain-to-source   0.017 0.017 ? v gs = -12v, i d = -45a on-state resistance (to-3) r ds(on) static drain-to-source on-state  0.017 0.017 ? v gs = -12v, i d = -45a resistance (low-ohmic to-254) international rectifier radiation hardened mosfets are tested to verify their radiation hardness capability. the hardness assurance program at international rectifier is comprised of two radiation environments. every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the to-3 package. both pre- and post-irradiation performance are tested and specified using the same drive circuitry and testconditions in order to provide a direct comparison. radiation characteristics fig a. typical single event effect, safe operating area v sd diode forward voltage   -5.0 -5.0 v v gs = 0v, i s = -45a international rectifier radiation hardened mosfets have been characterized in heavy ion environment for single event effects (see). single event effects characterization is illustrated in fig. a and table 2. for footnotes refer to the last page table 2. typical single event effect safe operating area ion let energy range vds (v) (mev/(mg/cm 2 )) (mev) (m) @vgs=0v @vgs=5v @vgs=10v @vgs=15v @vgs=20v br 37.3 285 36.8 - 60 - 60 - 60 - 60 - 60 i 59.9 345 32.7 - 60 - 60 - 60 - 45 - 25 au 82.3 357 28.5 - 60 - 60 - 60 -70 -60 -50 -40 -30 -20 -10 0 0 5 10 15 20 vgs vds br i au 1. part number: irhms597064, jansr2n7524t12. part number: irhms593064, jansf2n7524t1 downloaded from: http:///
irhms597064, jansr2n7524t1 pre-irradiation 4 www.irf.com   normalized on-resistance vs. temperature   typical output characteristics   typical output characteristics    typical transfer characteristics 15 0.1 1 10 100 -v ds , drain-to-source voltage (v) 1 10 100 1000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c vgs top -15v -12v -10v -9.0v -8.0v -7.0v -6.0v bottom -5.0v -5.0v 0.1 1 10 100 -v ds , drain-to-source voltage (v) 1 10 100 1000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 150c vgs top -15v -12v -10v -9.0v -8.0v -7.0v - 6.0v bottom -5.0v -5.0v 55 . 566 . 57 -v gs , gate-to-source voltage (v) 10 100 1000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = -25v 60 s pulse width t j = 150c t j = 25c -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d -12v -45a downloaded from: http:///
www.irf.com 5 pre-irradiation irhms597064, jansr2n7524t1 
  maximum safe operating area    typical gate charge vs. gate-to-source voltage    typical capacitance vs. drain-to-source voltage    typical source-drain diode forward voltage 1 10 100 0 2000 4000 6000 8000 10000 12000 -v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd c iss c oss c rss 0.0 1.0 2.0 3.0 4.0 5.0 -v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 - i s d , r e v e r s e d r a i n c u r r e n t ( ) v gs = 0v t j = 150c t j = 25c 0 50 100 150 200 0 4 8 12 16 20 q , total gate charge (nc) -v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 -45a v = -12v ds v = -30v ds v = -48v ds 1 10 100 -v ds , drain-to-source voltage (v) 1 10 100 1000 - i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1ms 10ms operation in this area limited by rds(on) 100 s dc downloaded from: http:///
irhms597064, jansr2n7524t1 pre-irradiation 6 www.irf.com fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case  maximum drain current vs. case temperature fig 10a. switching time test circuit     
 1     0.1 %          + - v ds 90% 10% v gs t d(on) t r t d(off) t f 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc p t t dm 1 2 25 50 75 100 125 150 0 20 40 60 80 100 t , case temperature ( c) -i , drain current (a) c d limited by package downloaded from: http:///
www.irf.com 7 pre-irradiation irhms597064, jansr2n7524t1 fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current q g q gs q gd v g charge  d.u.t. v ds i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds v dd driver a 15v -20v t p v ( br ) dss i as       25 50 75 100 125 150 starting t j , junction temperature (c) 0 400 800 1200 1600 2000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top -20a -28.5a bottom -45a downloaded from: http:///
irhms597064, jansr2n7524t1 pre-irradiation 8 www.irf.com  pulse width 300 s; duty cycle 2%  total dose irradiation with v gs bias. -12 volt v gs applied and v ds = 0 during irradiation per mil-std-750, method 1019, condition a.  total dose irradiation with v ds bias. -48 volt v ds applied and v gs = 0 during irradiation per mll-std-750, method 1019, condition a.  repetitive rating; pulse width limited by maximum junction temperature.  v dd -30v, starting t j = 25c, l = 0.88mh peak i l = -45a, v gs = -12v  i sd -45a, di/dt -417a/ s, v dd -60v, t j 150c footnotes: 3.81 [.150] 0.12 [.005] 1.27 [.050] 1.02 [.040] 6.60 [.260] 6.32 [.249] c 14.48 [.570] 12.95 [.510] 3x 0.36 [.014] b a 1.14 [.045] 0.89 [.035] 2x 3.81 [.150] 20.32 [.800] 20.07 [.790] 13.84 [.545] 13.59 [.535] 3.78 [.149] 3.53 [.139] 17.40 [.685] 16.89 [.665] a 123 13.84 [.545] 13.59 [.535] 0.84 [.033] max. b 2. all dimensions are shown in millimeters [inches]. 1. dimensioning & tolerancing per asme y14.5m-1994. 4. conforms to jedec outline to-254aa. 3. controlling dimension: inch. not es : pin assignments 1 = drain 2 = source 3 = gate caution beryllia warning per mil-prf-19500 package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on themwhich will produce beryllia or beryllium dust. furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium. case outline and dimensions low-ohmic to-254aa ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir leominster : 205 crawford st., leominster, massachusetts 01453, usa tel: (978) 534-5776 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . data and specifications subject to change without notice. 03/2012 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRHMS597064SCS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X